Tropical Jucys covers

نویسندگان

چکیده

Abstract We study monotone and strictly Hurwitz numbers from a bosonic Fock space perspective. This yields to an interpretation in terms of tropical geometry involving local multiplicities given by Gromov-Witten invariants. Furthermore, this enables us prove that main result Cavalieri-Johnson-Markwig-Ranganathan is actually equivalent the Gromov-Witten/Hurwitz correspondence Okounkov-Pandharipande for equivariant Riemann sphere.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Éléments de Jucys-Murphy généralisés

We define Jucys-Murphy elements for the finite Coxeter groups which do not contain D4 as a parabolic subgroup. We prove that these elements share some previously established properties with the original Jucys-Murphy elements of the symmetric group. This enables one to envisage an approach to the representation theory of these groups similar to the Vershik-Okounkov reconstruction for the symmetr...

متن کامل

Jucys–murphy Elements and Weingarten Matrices

We provide a compact proof of the recent formula of Collins and Matsumoto for the Weingarten matrix of the orthogonal group using Jucys–Murphy elements.

متن کامل

On Cellular Algebras with Jucys Murphy Elements

We study analogues of Jucys-Murphy elements in cellular algebras arising from repeated Jones basic constructions. Examples include Brauer and BMW algebras and their cyclotomic analogues.

متن کامل

On complete functions in Jucys-Murphy elements

The problem of computing the class expansion of some symmetric functions evaluated in Jucys-Murphy elements appears in different contexts, for instance in the computation of matrix integrals. Recently, M. Lassalle gave a unified algebraic method to obtain some induction relations on the coefficients in this kind of expansion. In this paper, we give a simple purely combinatorial proof of his res...

متن کامل

Symmetric Polynomials in Jucys-Murphy Elements and the Weingarten Function

We determine the coefficients of the classes of highest weight in the conjugacy class expansion of the monomial symmetric polynomials evaluated at the Jucys-Murphy elements. We apply our result, along with other properties of Jucys-Murphy elements, to give streamlined derivations of the first-order asymptotics and character expansion of the Weingarten function for the unitary group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2022

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02940-2